Evaluating the Suitability of a Reforestation Growth Medium Prepared by Tractor Pulled Scraper Pans at an East Texas Lignite Surface Mine

Hannah Z. Angel¹, Hans M. Williams¹, Jeremy P. Stovall¹

¹Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX angelhz@sfasu.jacks.edu

Introduction

Luminant has planted 36.4 million trees on its reclaimed surface mine operations in east Texas since 1975. Studies conducted at Luminant mines found high levels of compaction from reclamation equipment hindered reclamation success (Yao 1994). Development of new reclamation methodologies offers opportunities to improve productivity potential of planted trees. This research will evaluate soil physical and chemical properties, particularly bulk density, between two sites at the Oak Hill Mine reclaimed using different methods. A soil tillage study at a scraper-pan test site will evaluate four different tillage techniques on tree establishment and growth.

Objectives

- Evaluate two reclamation techniques currently operating at the Oak Hill Mine (Fig. 1) in terms of physical and chemical soil properties:
 1. Truck & shovel combination (or haulback method)
 2. Tractor-pulled scraper pans
- Determine if the effects of mine soil compaction can be alleviated at the scraper pan test site by comparing four mine soil tillage treatments

Methods

At the each of the test sites (Fig. 2) an area of 0.30 hectares will be established for sample plots (n=5). Physical and chemical soil properties will be measured at various soil depths (0-30, 30-60, 60-90, 90-120 cm):

1. Soil surface (<30 cm) and subsurface (>30 cm) bulk density using a slide hammer
2. Penetration resistance at 10 cm intervals
3. Infiltration rate at soil surface
4. Soil water concentration
5. Soil pH, texture, and nutrient content

Study Location

Luminant’s reforested mined land in east Texas

Test Sites

Fig. 1. Oak Hill Mine in Henderson, Texas

Soil Tillage Study

At the scraper pan test site, four soil tillage treatments were implemented and will be sampled for the properties listed in the methods section, and loblolly pine (Pinus taeda) survival and growth. Treatments include:

1. Disking (30-35 cm depth);
2. Ripping (120 cm depth) and diskng;
3. Cross-ripping and diskng;
4. No tillage (control)

Acknowledgements

The authors thank the Luminant Environmental Research Program, Stephen F. Austin State University, and the McIntire-Stennis Cooperative Research Program for their support.

Literature Cited