Short-term carbon partitioning fertilizer responses vary among two full-sib loblolly pine clones

Jeremy P. Stovall
John R. Seiler
Thomas R. Fox

2/15/2011
Clonal Fertilizer Response
Hypotheses

• So how are clones responding to fert?
 – Photosynthesis..... Some clones (King et al. 2008)
 – Biomass partitioning..... (Stovall et al. 2011)
 – Respiratory C fluxes..... ?
Greenhouse Experiment

- Wakulla series (SETRES)
- 2 Clones w/ same parents
 - C 34: Narrow crown
 - C 769: Wide crown
- 2 Fertilizer levels
- 4 Monthly Harvests
- 8 Replications
The influence of N and P supply and genotype on carbon flux and partitioning in potted *Pinus radiata* plants

HORACIO E. BOWN, MICHAEL S. WATT, PETER W. CLINTON, EUAN G. MASON and DAVID WHITEHEAD

Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest

CHRISTIAN P. GIARDINA*, MICHAEL G. RYAN†‡§, DAN BINKLEY‡§ and JAMES H. FOWNES*

*Department of Natural Resources and Environmental Management, University of Hawai‘i at Manoa, Honolulu, HI 96822, USA, †USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Street, Fort Collins, CO 80526-2098, USA, ‡Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA, §Department of Forest Sciences, Colorado State University, Fort Collins, CO 80523, USA
C Budgeting Simplified

- GPP = ANPP + APR + TBCF
- TBCF = $F_S + \Delta C_R$
Measuring APR & F_S Directly
Quantifying ANPP & ΔC_R

Using Monthly Harvest Data

\[\text{biomass} = a \cdot (\text{basal diameter})^b \cdot (\text{height})^c \]

Aboveground Biomass

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Coefficients</th>
<th>Statistics</th>
<th>F</th>
<th>p-value</th>
<th>R^2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clone</td>
<td>Fert</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0.2920</td>
<td>1.1369</td>
<td>0.3848</td>
<td>476.51</td>
<td><0.0001</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0.1231</td>
<td>1.2144</td>
<td>0.5794</td>
<td>622.51</td>
<td><0.0001</td>
</tr>
<tr>
<td>769</td>
<td>0</td>
<td>0.4868</td>
<td>1.2454</td>
<td>0.1919</td>
<td>856.21</td>
<td><0.0001</td>
</tr>
<tr>
<td>769</td>
<td>1</td>
<td>0.0362</td>
<td>1.6936</td>
<td>0.6130</td>
<td>575.99</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Belowground Biomass

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Coefficients</th>
<th>Statistics</th>
<th>F</th>
<th>p-value</th>
<th>R^2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clone</td>
<td>Fert</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0.3013</td>
<td>1.1540</td>
<td>0.1640</td>
<td>307.11</td>
<td><0.0001</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0.0434</td>
<td>2.1348</td>
<td>0.0833</td>
<td>254.35</td>
<td><0.0001</td>
</tr>
<tr>
<td>769</td>
<td>0</td>
<td>0.0734</td>
<td>1.2373</td>
<td>0.5320</td>
<td>355.50</td>
<td><0.0001</td>
</tr>
<tr>
<td>769</td>
<td>1</td>
<td>0.1332</td>
<td>2.2059</td>
<td>-0.1686</td>
<td>295.06</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Other Method Details

• All values integrated over 121 days
• Q_{10} 2.0 for respiration rates (Ryan et al. 1991)
• All data treatment-combo specific
• Harvest vs. other tree measurements
Growth Is Similar

![Bar chart showing growth comparison between clones C34 NF, C34 F, C769 NF, and C769 F. The chart indicates that growth is similar for all clones.]
Fertilizer Effect on C Allocation

![Bar chart showing the effect of fertilizer on C allocation. The x-axis represents different components of C allocation, and the y-axis represents g C. The chart indicates significant differences (p < 0.01) for certain categories.](chart.png)
Belowground Allocation Clonal Effect

p < 0.01
Total Belowground C Flux

- C 34
- C 769

p < 0.01
Aboveground Respiration Interaction

![Bar chart showing the interaction of aboveground respiration for different treatments. The chart indicates statistical significance with p < 0.05 for certain comparisons.](chart.png)
Clone x Fert Allocation Interactions

- NPP / GPP: p < 0.05
 - C34 Control
 - C34 Fert
 - C769 Control
 - C769 Fert

- ANPP / GPP: p < 0.05
- APR / GPP: p < 0.10
Whole Carbon Budget
Differences in Clonal Allocation

C 34

APR

ANPP

F_S

ΔC_R

C 769

APR

ANPP

F_S

ΔC_R
Conclusions and Implications

• So how do clones respond to fertilizer?
 – Photosynthesis..... Some clones (King et al. 2008)
 – Biomass partitioning..... (Stovall et al. 2011)
 – Respiratory C fluxes..... This greenhouse study

• Can’t generalize across clones

• Can we find ideotypes?
Questions?

Jeremy Stovall
Assistant Professor of Silviculture
Stephen F. Austin State University
Arthur Temple College of Forestry and Ag
Phone: (936)-468-2127
Email: stovalljp@sfasu.edu